Traversal
- DFS Traversal: (using recursion or iteration)
- Preorder traversal: mid → left → right
- Inorder traversal: left → mid → right
- Postorder traversal: left → right → mid
- BFS Traversal: (using iteration)
- Level traversal
Problem:
- Level Order Traversal
- 102: Binary Tree Level Order Traversal
- 107: Binary Tree Level Order Traversal II
- 199: Binary Tree Right Side View
- 637: Average of Levels in Binary Tree
- 429: N-ary Tree Level Order Traversal
- 515: Find Largest Value in Each Tree Row
- 116: Populating Next Right Pointers in Each Node
- 117: Populating Next Right Pointers in Each Node II
- 104: Maximum Depth of Binary Tree
- 111: Minimum Depth of Binary Tree
- 513: Find Bottom Left Tree Value
- Traverse Backtracking
- Construct Binary Tree
Binary Search Tree
For a BST, for each node in it,
- if the node’s left sub-tree is not Null, all values on the left sub-tree is smaller than the node’s value
- if the node’s right sub-tree is not Null, all values on the right sub-tree is bigger than the node’s value
Remark:
- To get a sorted array from the BST, use Inorder Traversal
Problem:
- BST → Ordered List (Inorder traversal) Or Inplace Operation
Loading Comments...